2022年诺贝尔物理学奖揭晓

2022年诺贝尔物理学奖揭晓

2022年诺贝尔物理学奖揭晓

(蜘蛛网eeook.com)据科学网(作者 冯丽妃 梅进):北京时间10月4日下午5点49分许,瑞典皇家科学院决定将2022年的诺贝尔物理学奖授予法国科学家Alain Aspect、美国科学家John F.Clauser和奥地利科学家Anton Zeilinger ,以表彰他们“进行了纠缠光子的实验,确立了对贝尔不等式的不成立,并开创了量子信息科学” 。

2022年的诺贝尔奖单项奖金为1000万瑞典克朗(约合人民币642.8万元),三位获奖者将平分1000万瑞典克朗奖金。

纠缠态——从理论到技术

Alain Aspect、John Clauser和Anton Zeilinger用纠缠量子态进行了开创性的实验。在纠缠量子态中,即使两个粒子分离,它们也表现得像一个单独的单元。他们的研究结果为基于量子信息的新技术扫清了道路。

量子力学的不可言喻的效应正在开始得到应用。现在有一个很大的研究领域,包括量子计算机、量子网络和安全的量子加密通信。

这一进展的一个关键因素是,量子力学如何允许两个或多个粒子以所谓的纠缠态存在。纠缠对中的一个粒子发生的情况决定了另一个粒子发生的情况,即使它们相距很远。

在很长一段时间里,问题在于这种相关性是否是因为纠缠对中的粒子包含隐藏变量,即告诉它们在实验中应该给出哪个结果的指令。20世纪60年代,John Stewart Bell提出了以他的名字命名的数学不等式。这表明,如果存在隐藏变量,那么大量测量结果之间的相关性将永远不会超过某个值。然而,量子力学预测,某种类型的实验将违反贝尔不等式,从而产生比其他情况下更强的相关性。

John Clauser发展了John Bell的想法,开展了一个实际的实验。当他进行测量时,它们显然违反了贝尔不等式,从而支持了量子力学。这意味着量子力学不能被使用隐变量的理论所取代。

在John Clauser的实验之后,仍然存在一些漏洞。Alain Aspect发展了这个设置,利用它堵住了一个重要的漏洞。他能够在一个纠缠对离开它的源后切换测量设置,所以当它们被发射时存在的设置不会影响结果。

通过精密的工具和一系列的实验,Anton Zeilinger开始使用纠缠量子态。 而且,他的小组还展示了一种被称为量子隐形传态的现象,这种现象使得量子态在一定距离内从一个粒子移动到另一个粒子成为可能。

“越来越明显,一种新的量子技术正在出现。我们可以看到,获奖者对纠缠态的研究非常重要,甚至超越了解释量子力学的基本问题,”诺贝尔物理学委员会主席Anders Irbäck说。

获奖者介绍:

Alain Aspect,1947年出生于法国阿根。1983年从法国奥赛巴黎-南德大学获得博士学位。目前为法国巴黎萨克莱大学和帕莱索理工学院教授。

John F. Clauser,1942年出生于美国加州帕萨迪纳。1969年从美国纽约哥伦比亚大学获得博士学位。

Anton Zeilinger,1945年出生于奥地利里德伊姆·因克瑞斯。1971年从奥地利维也纳大学获得博士学位。目前为维也纳大学教授。

过去7年诺贝尔物理学奖得主名单

2021年——美德意三位科学家因“对人们理解复杂物理系统的开创性贡献”而获奖。美籍日裔科学家Syukuro Manabe、德国科学家Klaus Hasselmann的获奖理由是“物理模拟地球气候,量化变化和可靠地预测全球变暖”;意大利科学家Giorgio Parisi的获奖理由是“发现从原子到行星尺度的物理系统的无序和波动的相互作用”。

2020年——英国科学家Roger Penrose获奖,获奖理由是“发现黑洞形成是广义相对论的一个有力预测”;另外两位获奖者是德国和美国科学家Reinhard Genzel、Andrea Ghez,获奖理由是“在银河系中心发现了一个超大质量的致密天体”。

2019年——美国科学家James Peebles获奖,获奖理由是“在物理宇宙学的理论发现”;另外两位获奖者是瑞士科学家Michel Mayor和Didier Queloz,获奖理由是“发现了一颗围绕类太阳恒星运行的系外行星”。

2018年——美法加三位科学家Arthur Ashkin、Gerard Mourou和Donna Strickland获奖,获奖理由是“在激光物理学领域所作出的开创性发明”。

2017年——三位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne获奖,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。

2016年——英美三位科学家David J. Thouless、F. Duncan M. Haldane、J. Michael Kosterlitz获奖,获奖理由是“理论发现拓扑相变和拓扑相物质”。

2015年——日本科学家Takaaki Kajita和加拿大科学家Arthur B. McDonald获奖,获奖理由是“发现了中微子振荡,表明中微子具有质量”。

诺贝尔物理学奖小知识

——截至2021年,诺贝尔物理学奖共颁发了115次,没有颁发的六年分别是1916、1931、1934、1940、1941和1942年。

——从1901年至2021年,共219人次获奖,实际获奖个人为218人,因为美国物理学家John Bardeen于1956年和1972年两次获奖。

——115次颁奖中,47次为单独获奖者,32次为2人共享,36次为3人共享。

——最年轻的获奖者是英国物理学家Lawrence Bragg,1915年因“用X射线对晶体结构的分析所作的贡献”与父亲一起获奖,时年25岁。

——最年长的获奖者是美国物理学家Arthur Ashkin,2018年因“在激光物理学领域所作出的开创性发明”获奖,时年96岁。

——215位诺贝尔物理学奖得主中,有4位女性。分别是1903年的居里夫人(居里夫人另外还获得1911年的化学奖)、1963年的Maria Goeppert-Mayer、2018年的Donna Strickland,以及2020年的Andrea Ghez。

——诺奖史上的“家庭”诺奖。

夫妇:Marie Curie和Pierre Curie夫妇获得1903年的诺贝尔物理学奖;

父子:William Bragg和Lawrence Bragg父子获得1915年的诺贝尔物理学奖;Niels Bohr获得1922年诺贝尔物理学奖,其子Aage N. Bohr获得1975年诺贝尔物理学奖;Manne Siegbahn获得1924年诺贝尔物理学奖,其子Kai M. Siegbahn获得1981年诺贝尔物理学奖;J. J. Thomson获得1906年诺贝尔物理学奖,其子George Paget Thomson获得1937年诺贝尔物理学奖。

相关:2022年诺贝尔物理学奖背后也有中国科学家的贡献

(蜘蛛网eeook.com)据科技日报(记者 陆成宽):刚刚,瑞典皇家科学院宣布,将2022年诺贝尔物理学奖授予法国科学家阿兰·阿斯佩、美国科学家约翰·克劳泽和奥地利科学家安东·塞林格,以表彰他们在“纠缠光子实验、验证贝尔不等式违背和开创量子信息科学”方面所作出的贡献。

得知诺奖再次授予量子科技领域的研究者,中国科技大学常务副校长、中科院院士潘建伟感到非常振奋。

他说:“一方面,量子科技领域得到了肯定;另一方面,颁奖委员会在介绍获奖者的工作时,提到了很多中国科学家所做的工作。我们觉得,为了这个领域的发展,中国科学家也作出了杰出贡献。”

他们是第二次量子信息革命的领路人

对普通人来说,关于量子的学说都显得高深莫测。事实上,20世纪初建立的量子力学是人类历史上最伟大的科学革命之一。

量子科技可以在保障信息安全、提高运算速度、提升测量精度等方面突破经典技术的瓶颈,成为信息、能源、材料和生命等领域重大技术创新的源泉,为保障国家安全和支撑国民经济高质量发展提供核心战略力量。

刚刚获奖的三位科学家,是最早开展量子物理实验研究的人。

“这三位科学家早就应该获诺奖了,2010年,他们就因为量子力学非定域性检验和推动了光量子信息的处理,得到了沃尔夫奖的肯定。”潘建伟说。

“他们是第二次量子信息革命的领路人,是量子信息科学重要的先驱。”南京大学教授马小松是安东·塞林格的学生,他认为,这三位科学家获得诺贝尔物理学奖实至名归。

“在量子信息领域中,量子网络的非局域性验证、量子隐态传输、远距离量子隐态传输等,都是由这三位量子信息科学先驱开创的。”马小松介绍。

让人高兴的是,在这些研究工作中,中国科学家也作出了重要贡献。作为安东·塞林格的学生,颁奖委员会提到的安东·塞林格的研究工作,潘建伟院士是最主要的参与者之一。

“颁奖委员会提到了我导师安东·塞林格的四篇量子通信实验文章。我是其中两篇文章的第一作者,两篇文章的第二作者。”潘建伟说。

同时,“颁奖委员会还提了另外三篇文章,而这三篇文章都是中国科学家独立开展的研究工作。所以,从这一点讲,我不仅是加入了塞林格的研究团队,也参与了开创量子信息物理学这个领域,我感到很幸运。”潘建伟说。

更重要的是,“在把获奖科学家的梦想变成现实的过程中,中国科学家也作出了很大的贡献。”在这方面的成绩让潘建伟感到很骄傲。

塞林格成功预见到一个新领域即将诞生

谈到自己的导师安东·塞林格,潘建伟的第一印象是他非常知人善任。

“刚到导师团队的时候,我没有做实验的经历。面对这种情况,一般的导师都会比较犹豫,不会让一个搞理论的人去做实验。但是,因为我导师自己也有做理论的背景,所以他也很高兴,同意我去做实验工作。”潘建伟说。

同时,安东·塞林格也能够尊重学生的选择,并加以适当的引导,让学生实现自己的梦想。“从这个角度讲,他又是一位非常好的老师。”

“塞林格老师很有远见,他成功预见到一个新领域即将诞生。”潘建伟记得很清楚,欧洲第一个关于量子信息的欧盟联合课题,就是在塞林格的主导下设立的,“我看到他的项目申请书是1996年”。

在潘建伟眼里,自己的导师安东·塞林格是一个对学生很好的老师,他非常有远见,同时也能够做到知人善任。

2005年至2012年,马小松在安东·塞林格教授的指导下,开展量子物理学领域相关研究。

“量子物理学的实验漫长而又充满不确定,每一次实验的成功都要经历无数次失败,这是一个慢慢精进的过程,需要长时间的磨炼。在整个研究过程中,安东·塞林格教授一直保持着对这个学科的无比热爱。同时,他也非常关心年轻人的成长,经常鼓励我们,包括潘建伟院士。”马小松说。

三周前的一次学术会议上,安东·塞林格告诉马小松,他刚刚从奥地利科学院院长职位退休,又回到了他热爱的科研工作岗位,继续从事科学研究,感到非常激动。

我国有一批具有重要国际影响力的成果

近年来,我国也高度重视量子信息科技的发展,在量子信息科技领域突破了一系列重要科学问题和关键核心技术,产出了一批具有重要国际影响力的成果。

“总体而言,我国在量子通信的研究和应用方面处于国际领先地位,在量子计算方面与发达国家处于同一水平线,在量子精密测量方面发展迅速。”潘建伟说。

他表示,量子通信的发展目标是构建全球范围的广域量子通信网络体系。通过光纤实现城域量子通信网络、通过中继器实现邻近两个城市之间的连接、通过卫星平台的中转实现遥远区域之间的连接,是广域量子通信网络的发展路线。

我国的城域量子通信技术已初步满足实用化要求,我国建成了国际上首条远距离光纤量子保密通信骨干网“京沪干线”,在金融、政务、电力等领域开展远距离量子保密通信的技术验证与应用示范。在卫星量子通信方面,我国研制并发射了世界首颗量子科学实验卫星“墨子号”,在国际上率先实现了星地量子通信,首次实现了洲际量子通信,充分验证了基于卫星平台实现全球化量子通信的可行性。

量子计算研究的核心任务是多量子比特的相干操纵。当前,量子计算研究已经实现“量子优越性”,即量子计算机对特定问题的计算能力超越传统超级计算机,达到这一目标需要约50个量子比特的相干操纵。

2020年,潘建伟和陆朝阳等学者研制成功76个光子的量子计算原型机“九章”,推动了全球量子计算的前沿研究达到一个新高度,继谷歌“悬铃木”量子计算机之后,我国首次成功实现“量子计算优越性”的里程碑式突破。

然而,“我国在量子精密测量领域起步较晚,整体上相比发达国家存在一定的差距,但近年来已经迅速缩小了差距,在若干研究方向上与公开报道的国际最高水平相当。”潘建伟说。

相关:为啥今年这么多人都猜中了诺贝尔物理学奖?

(蜘蛛网eeook.com)据《中国科学报》(记者 韩扬眉 张双虎 倪思洁):“众望所归,他们终于获得了诺贝尔奖!”

10月4日下午,瑞典皇家科学院决定将2022年的诺贝尔物理学奖授予法国科学家Alain Aspect、美国科学家John F.Clauser和奥地利科学家Anton Zeilinger ,以表彰他们“用纠缠光子进行的实验,确定了贝尔不等式的不成立,并开创了量子信息科学”。

上世纪70年代开始,科学家们开始在实验上深入探索量子世界,三人前赴后继,历时30年,克服诸多困难,最终完成了量子隐形传态的原理性实验验证,成为量子信息实验领域的开山之作。

如今,量子力学已拥有很广阔的研究领域,包括量子计算机、量子网络和安全的量子加密通信。

“越来越明显的是,一种新的量子技术正在出现。我们可以看到,获奖者对纠缠态的研究非常重要,甚至超越了解释量子力学的基本问题。”诺贝尔物理学委员会主席Anders Irbäck说。

为什么量子信息科学获奖成为“众望所归”?如何认识量子科学理论与实验的关系?量子科技何时能成为现实?《中国科学报》记者邀请4位专家进行解读。

《中国科学报》:看到今年诺奖的评选结果后,你有什么感受?

中国科学院理论物理研究所研究员蔡荣根:众望所归,奥地利科学家Anton Zeilinger是中国科大潘建伟院士的导师,是中国科学院外籍院士。他与中国有着很好的合作关系,常来作报告。

清华大学物理系教授龙桂鲁:这对量子信息这么多年取得的成绩是一个肯定。事实上,三位科学家已经在2010年获得沃尔夫物理学奖,表彰他们在量子纠缠领域的成就。

中国科学院物理研究所特聘研究员沈洁:量子的研究和技术手段进步很快,但本质底层的基础进展可能并不是那么快,这也使得很多现象难以解释,比如量子纠缠等,最本质的原因其实还是未知,未来,从更根本的角度深入解释,还需要理论的贡献。

《中国科学报》:这个研究究竟在讲啥?

龙桂鲁:上世纪60年代,约翰·贝尔提出一个关于是否存在完备局域隐变量理论的数学不等式。该定理在定域性和实在性的双重假设下,对于两个分隔的粒子同时被测量时其结果的可能关联程度建立了一个严格的限制,提供了用实验验证在量子不确定性和爱因斯坦的定域实在性之间做出判决的机会。

简单说,两个存在纠缠态的粒子分开以后,如果量子力学是对的,这个不等式的值就大于2。他们三位最早验证了贝尔不等式的违反,但是由于存在探测器效率低、两个量子之间距离短的漏洞,贝尔不等式违背的验证仍有物理学家质疑。

2015年,荷兰Ronald Hanson、美国Sae-Woo Nam等人和奥地利Zeilinger等实现了无漏洞的不等式验证,证明了量子力学的正确性。

《中国科学报》:三位诺奖得主在这项研究中的关系是怎样的?他们分别做了哪些贡献?

龙桂鲁:法国科学家Alain Aspect做超冷原子和量子光学;奥地利科学家Anton Zeilinger原来在麻省理工学院当老师,最早做中子干涉研究,后来回到奥地利开始做光学,他是潘建伟院士的博士生导师。2002年,我到Anton Zeilinger教授团队访问了两个月。美国科学家John F.Clauser原先做理论,后来理论和实验都做。

上世纪60年代,约翰·贝尔提出了以他名字命名的数学不等式,即“贝尔不等式”,Alain Aspect开始了一系列的实验对其验证,这也是国际最早的实验验证之一,验证结果是违反贝尔不等式的。早期实验是有漏洞的,不足以证明量子力学是正确的。2015年三位科学家摆出了实验漏洞。实验验证了贝尔不等式违背。

《中国科学报》:此次诺奖颁给量子实验科学家,如何认识理论与实验的关系?

蔡荣根:实验和理论研究相辅相成。通常理论会走在实验的前面,人们会根据观测事实提出一些理论,做出一些预言,并通过实验去验证它。通常好的技术手段有利于验证理论成果,而通过验证的理论,反过来会指导和支持技术的发展。

事实上,我们现在生活中的信息技术,各种高新技术很多都建立在相对论、量子力学基础之上。现在技术的发展能操控物质的量子性质,控制原子,让它的运动速度降下来,把温度降下来,这就是理论和实验相辅相成的典型例子。

中国科学院高能物理研究所特聘研究员陈缮真:理论物理指导我们实验工作,我们实验结果反馈给理论物理学家,如果符合理论预期,则是好事,若不符合,其实是更大的好事,说明理论有进一步发展的潜力。

如今基础科学研究越来越细化,要取得突破性进展,不光是理论物理学家和实验物理学家的合作,还要跟工程师等不同领域的专家合作,这是全新的科研模式。

《中国科学报》:量子通信技术多少年能够成为现实?

龙桂鲁:量子通信包含了一个广义的概念,通过移动量子态完成的任务都可以叫做量子通信。而经典通信的定义是信息的可靠传输,照此,我们的量子通信还算不上通讯,比如量子密钥分发,不是传递信息,而是协商密钥。我们提出的量子直接通信是经典通信意义上的通信。

经典保密通信有两个“担心”。窃听者可以把密文存储,第一个“担心”是,未来可能发现更快的算法,第二个是“担心”未来会有更强大计算机,保密期限会大幅度降低。

当前,量子通信由于器件方面的缺陷,还无法做到绝对安全。未来,将经典通信与量子通信相结合,可以实现现有条件下最安全的通信。

《中国科学报》:我们倡导从0到1的原始创新,诺奖成果可以给我们怎样的启示?科学家需要什么样的研究环境和氛围?

蔡荣根:诺奖主要颁给科学发现与技术发明,今年获奖的量子纠缠等在当初提出时显然与日常生活没有太大关系,也并不一定认识到其重要性,但随着时代发展,可能慢慢会演变从而改变我们的生活。

这就是基础研究,挑战性大、花费时间长,是我们较为缺乏的。当前,我国提倡从0到1的基础研究,减少跟风式研究,并给予了大力支持,科研人员应有雄心、有毅力做这样的研究,聚焦关键核心问题,为解决国家的重大需求做贡献。

做科学研究的目的也不是为了得诺贝尔奖,应是探索自然,为全人类做贡献,这是做科学研究的重要意义。

沈洁:三位获奖者都是实验科学家,这对我们实验工作者是一个激励,只要把实验做到极致,也能够获得重大突破、受到国际认可。

未来要做更多关于精密测量、量子通信等方面的前沿探索,这对年轻人来说是一个启发。

相关:纠缠,是一种强大的工具——2022年诺贝尔物理学奖解读

(蜘蛛网eeook.com)据科技日报(记者 张梦然):今天获得诺贝尔物理学奖的三位科学家——法国科学家阿兰•阿斯佩、美国科学家约翰•克劳泽、奥地利科学家安东•塞林格,他们通过开创性的实验展示了处于纠缠状态的粒子的潜力,这三位获奖者对实验工具的开发,也为量子技术的新时代奠定了基础。

你明白“纠缠”吗

在所谓的“纠缠对”中,一个粒子发生的事情,会决定另一个粒子发生的事情(不管相距多远)。这意味着什么?

量子力学的基础不仅仅是一个理论或哲学问题。其与全世界正密集研发的、以利用单个粒子系统的特殊属性来构建的量子计算机、改进测量、量子网络以及量子加密通信,都能息息相关。

以上应用,均需依赖于量子力学如何允许两个或多个粒子以共享状态存在,甚至无论它们相隔千山万水,均能保持这一状态。

这被称为纠缠。

自从该理论提出以来,它一直是量子力学中争论最多的元素之一。

阿尔伯特·爱因斯坦说这是“幽灵般的超距作用”,而埃尔温·薛定谔说这是量子力学最重要的特征。

今年的获奖者们,探索了这些纠缠的量子态,他们的实验为基于量子信息的新技术扫清了障碍,为目前正在进行的量子技术革命奠定了基础。

不断解决漏洞

长期以来存在的一个问题是,相关性究竟是不是因为纠缠对中的粒子包含隐藏变量。1960年代,约翰•斯图尔特•贝尔提出了以他的名字命名的数学不等式。这说明如果存在隐藏变量,则大量测量结果之间的相关性,永远不会超过某个值。然而,量子力学预测某种类型的实验将违反贝尔不等式,从而导致比其他方式可能产生的更强的相关性。

约翰•克劳泽发展了贝尔的想法,并通过一个实际的实验进行测量,测量结果通过明显违反贝尔不等式来支持量子力学。这意味着,量子力学不能被使用隐藏变量的理论所取代。

在约翰•克劳泽的实验之后,一些漏洞仍然存在。阿兰•阿斯佩开发了一种新设置,并以一种弥补重要漏洞的方式使用它。他能够在纠缠对离开其源后切换测量设置,因此在它们发射时既有设置就不会影响结果。

使用改良工具和一系列长期实验,安东•塞林格的团队利用纠缠量子态证明了一种称为量子隐形传态的现象,它可以将量子态从一个粒子移动到远距离的另一个粒子。

“纠缠态”正从理论走向技术

量子力学现已开始得到应用,并产生了很广阔的研究领域,其包括量子计算机、量子网络和更为安全的量子加密通信。

从实践的角度来说,量子纠缠所代表的,其实是一个巨大资源。科学家们对量子纠缠漏洞的不满,正源于每一阶段可应用范围的不够。

诺贝尔物理学委员会主席安德斯•伊尔贝克这样总结道:“越来越清楚的是,一种新型的量子技术正在出现。我们可以看到,获奖者在纠缠态方面的工作非常重要,甚至超出了关于量子力学解释的基本问题。”

相关:三名科学家分享2022年诺贝尔物理学奖

(蜘蛛网eeook.com)据新华社斯德哥尔摩10月4日电(记者 和苗 付一鸣):瑞典皇家科学院4日宣布,将2022年诺贝尔物理学奖授予法国科学家阿兰·阿斯佩、美国科学家约翰·克劳泽和奥地利科学家安东·蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的贡献。

瑞典皇家科学院在当天发表的新闻公报中说,三位获奖者在量子纠缠实验方面都有重要贡献。量子纠缠是指,在量子力学中处于纠缠态的两个或多个粒子,即便分开很远距离,有些状态也会表现得像是一个整体。他们的实验结果“为基于量子信息的新技术扫清了道路”,目前在量子计算、量子网络和量子保密通信方面已有大量相关研究。

公报说,在量子力学的发展历程上有一个著名的贝尔不等式,如果它始终成立,那么量子力学可能被其他理论替代。为此,许多量子科学家一直在寻找违反贝尔不等式的验证,克劳泽提出了一个利用处于纠缠态的光子的实验,其结果可以违反贝尔不等式,阿斯佩进一步填补了克劳泽实验中的重要漏洞。蔡林格进行了更多实验,并且其团队还利用量子纠缠展示了量子隐形传态,即有关量子态的传输。

诺贝尔物理学奖评委托尔斯·汉斯·汉森在现场解读获奖成果时展示了一张含有中国量子卫星的图片,其上显示了中国和欧洲之间的洲际量子通信实验。他告诉新华社记者,中国在量子卫星和量子通信研究方面走在世界前列,“中国量子通信卫星图彰显了物理学的国际合作,也体现了中国在这一研究领域的贡献”。

阿斯佩1947年出生于法国,目前为法国巴黎-萨克雷大学和巴黎综合理工大学教授;克劳泽1942年出生于美国,目前就职于他自己在加利福尼亚州创始的一家公司;蔡林格1945年出生于奥地利,目前为奥地利维也纳大学教授。

三名科学家将平分1000万瑞典克朗(约合90万美元)奖金。

相关:2022年诺贝尔物理学奖为何颁给了这三位?

(蜘蛛网eeook.com)据新京报(记者 谢莲 张璐):他们证明了爱因斯坦的一个错误。

“今年诺贝尔物理学奖颁给这三个人,确实毫不意外。”10月4日下午,中科院物理所原研究员、北京凝聚态物理国家研究中心原首席科学家、上海交通大学李政道研究所讲席教授丁洪在接受新京报记者采访时表示,这三位科学家获奖也属于众望所归。

北京时间10月4日下午,瑞典皇家科学院宣布,将2022年诺贝尔物理学奖颁给法国科学家阿兰·阿斯佩(Alain Aspect)、美国科学家约翰·克劳泽(John F. Clauser)和奥地利科学家安东·蔡林格(Anton Zeilinger),以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所作出的贡献。他们将平均分享1000万瑞典克朗(约合人民币647万元)的奖金。

丁洪表示,这三位科学家的研究价值主要有两方面,一是证明了量子具有纠缠性,也就是证明量子力学是正确的,这也就证明了爱因斯坦的一个错误;二是他们的开创性实验,为今后量子信息技术尤其是量子通信的发展铺平了道路。

获奖者是谁?

阿斯佩、克劳泽、蔡林格三人获得诺贝尔物理学奖在许多人的意料之内。主要是因为,三人2010年就曾同获沃尔夫物理学奖,表彰他们在量子纠缠领域的成就,为量子通信和量子计算等量子信息技术建立了基础。

12年之后,三位科学家因为其在量子信息科学技术方面的贡献同获诺贝尔物理学奖。

诺贝尔物理学奖委员会在10月4日的声明中表示,阿斯佩、克劳泽和蔡林格使用纠缠量子态进行了开创性实验,证实了研究和控制处于纠缠状态的粒子的潜力。这一试验结果为量子信息相关新技术的发展扫清了障碍。

现年75岁的阿兰·阿斯佩是法国物理学家、巴黎萨克莱大学和巴黎综合理工学院教授、法国科学院院士,同时也是香港城市大学香港高等研究院高级研究员。

据香港城市大学官网介绍,阿斯佩以其揭示量子力学最有趣特性的实验而闻名。1982年,他对纠缠光子的贝尔不等式测试推动解决了爱因斯坦(Albert Einstein)和玻尔(Niels Bohr)之间关于量子力学的争论。

约翰·克劳泽1942年12月出生于美国加利福尼亚州,是美国知名实验物理学家和理论物理学家。

据他的官网介绍,克劳泽最出名的是他对量子力学基础的贡献,尤其是他提出的克劳泽-霍恩-西蒙尼-霍尔特不等式(CHSH)、第一个通过实验证明非局部量子纠缠的真实性,以及塑造了局部现实主义理论。

安东·蔡林格现年77岁,是奥地利量子物理学家、维也纳大学物理学教授、奥地利科学院量子光学与量子信息研究所高级科学家。

据奥地利科学院官网介绍,蔡林格因其对量子物理学基础在概念和实验方面开创性的贡献闻名,尤其是他在量子纠缠领域的实验和理论工作广受认可。

证明爱因斯坦错了?

量子力学作为一个新兴的理论在上个世纪与其他理论之间有着长期的“交锋”,伟大的物理学家爱因斯坦也曾一度质疑这一理论的合理性。

据北京理工大学物理学院量子技术研究中心教授尹璋琦介绍,1935年,爱因斯坦、波多斯基和罗森三人提出了一个佯谬,指出要么量子理论是不完备的,要么量子力学会导致超光速的作用,与局域性相违背。这被称作EPR佯谬,因为三人姓名的首字母分别是E、P、R三个字母。

根据量子理论,微观粒子可以处于量子叠加态。比如说电子自旋有向上和向下两种状态,这两种自旋态可以处于任意的叠加态。如果有两个电子,两个电子的自旋态有四种可能:上上、下下、上下和下上。把它们制备到相互纠缠的状态,自旋同时向上和同时向下的叠加态。当测量出一个电子的自旋是向上(向下)的,那么另外一个电子的自旋态就塌缩到向上(向下)的状态,不论电子之间的距离到底有多远。这个塌缩的是瞬时的,传递速度超越了光速。最新的实验表明,这个超距相互作用传递速度至少是光速的一万倍。

“就好比一个电子在地球上,一个在月球上,尽管两者距离非常远,但如果对地球电子的自旋进行测量是向上的,则可以知道月亮上的电子自旋也是朝上的。”清华大学物理系教授、北京量子信息科学研究院副院长龙桂鲁告诉新京报记者,在爱因斯坦看来,这种超距相互作用是不可思议的。“现在看来,纠缠是量子力学体系特有的状态,在经典物理中是没有这种状态的。”

据尹璋琦介绍,作为爱因斯坦思想的继承人,1952年玻姆在标准量子理论中加入了经典的“隐变量”,把它变为了一个完全决定性的理论。

所以,很长一段时间,问题的关键在于搞清楚这种相关性是否是因为纠缠对中的粒子包含隐藏变量,从而“指示”它们在实验中的表现。1960年代,约翰·斯图尔特·贝尔提出了贝尔不等式,指的是如果存在隐藏变量,则大量的测量结果之间的相关性永远不大于2。但量子力学预测某种类型的实验将违反贝尔不等式,最大值可以到2倍的根号2(约等于2.848)。一旦实验测量的结果大于2,就意味着局域隐变量理论是错误的。贝尔不等式的诞生,宣告了量子理论的局域性争议,从带哲学色彩纯粹思辨变为实验可证伪的科学理论。

此后,本届诺贝尔物理学奖三人分别进行了验证贝尔不等式的实验。

1972年,约翰·弗朗西斯·克劳泽等人完成第一次贝尔定理实验,因存在定域性漏洞,即纠缠的粒子之间距离太小,不足以说明纠缠的非局域性,结果不具有说服力。1982年,贝尔不等式得到阿兰·阿斯佩等人验证,量子理论胜出。但这些实验中仍然存在漏洞。1998年,安东·蔡林格等人在奥地利因斯布鲁克大学完成贝尔定理实验,彻底排除定域性漏洞。但是实验用的单光子探测器效率不够高,无法排除测量带来的漏洞。

科学家一直在为完成无漏洞贝尔不等式违背的实验而努力。

2015年,荷兰代尔夫特大学物理学家罗纳德·汉森(Ronald Hanson)研究组报道了他们在金刚石色心系统中完成的验证贝尔不等式的实验。要避免局域性漏洞,只需把两个金刚石色心放置在相距1.3公里的两个实验室。利用纠缠光子对和纠缠交换技术,他们实现了金刚石色心电子之间的纠缠,同时解决了局域性漏洞与测量漏洞。这个实验也宣告了局域隐变量理论的死刑,量子非局域性是真实的。紧接着,美国Sae Woo Nam等人、奥地利的安东·蔡林格研究组也分别完成了无漏洞贝尔不等式违背的实验。

“简单来说,今年诺奖三位科学家证明了量子具有纠缠性,某种程度上来说也就是证明了爱因斯坦的一个错误,因为他是反对这一点的。”丁洪表示,“几位科学家上世纪七八十年代就完成了基本的实验,但到今年才基本全部完成验证。”

这项研究的价值在哪儿?

尹璋琦称,无漏洞的贝尔不等式验证实验,为未来量子密钥分发技术提供了技术储备。清华大学物理系教授、北京量子信息科学研究院副院长龙桂鲁称,此次获得诺奖的三人于2010年获得沃尔夫奖,此前也是诺奖的热门人选。

“这三位科学家对量子纠缠的研究,最大的现实应用价值就在于推动现代量子信息技术的发展,尤其是量子通信和量子计算。”丁洪对新京报记者解释道。

诺贝尔奖官网介绍称,当前,量子力学逐渐开始得到应用,关于量子计算机、量子网络、量子加密通信的研究越来越得到重视。

推进量子信息技术发展的一个关键影响因素就是,量子力学如何允许两个或多个粒子以纠缠状态存在——因为纠缠对中一个粒子的状态会决定另一个粒子的状态,即使它们相距非常遥远。

他进一步指出,从具体应用来看,这三位科学家通过开创性的实验证明,量子纠缠具有非定域性,也就是说量子纠缠可以在很远的距离进行超光速的传输,利用这一点,人们可以开展量子通信和量子密码的研究。

诺贝尔物理学委员会主席安德斯·伊尔贝克表示,“越来越清楚的是,一种新的量子技术正在出现。我们可以看到,获奖者对纠缠态方面的研究非常重要,甚至超出了关于量子力学解释的基本问题。”

目前,研究人员正在推动相关技术的研发,以利用单个粒子系统的特殊特性来构建量子计算机、改进测量、建立量子网络并发展安全的量子加密通信。

链接

诺贝尔物理学奖小知识

诺贝尔物理学奖是阿尔弗雷德·诺贝尔在其遗嘱中提到的第一个奖项。从1901年至2021年,诺贝尔物理学奖已颁发过115次,其中47次授予单一获奖者,32次由两位获奖者分享,36次由三位获奖者分享。

截至2021年,共有219位诺贝尔奖物理学奖获得者。其中,美国科学家约翰·巴丁是唯一曾在1956年和1972年两次获得诺贝尔物理学奖的获奖者,这意味着共有218人曾获得诺贝尔物理学奖。

最年轻的诺贝尔物理学奖得主是劳伦斯·布拉格,他1915年和父亲亨利·布拉格共同获奖时年仅25岁。最年长的诺贝尔物理学奖得主是亚瑟·阿斯金,他2018年获奖时已96岁。

在诺贝尔六大奖项中,物理学奖是女性获奖人次第二少的奖项,只多于仅有2名女性获奖的诺贝尔经济学奖。截至2021年,共有4名女性曾获得诺贝尔物理学奖,分别是玛丽·居里(1903年获奖,1911年获诺贝尔化学奖)、玛丽亚·梅耶(1963年获奖)、唐娜·斯特里克兰(2018年获奖)、安德烈娅·盖兹(2020年获奖)。

据人民网报道,诺贝尔物理学奖主要集中四个领域:粒子物理、天体物理、凝聚态物理、原子分子及光物理。但2021年的诺贝尔物理学奖首次颁给了气候学家真锅淑郎(Syukuro Manabe)和克劳斯·哈塞尔曼(Klaus Hasselmann),以表彰其在“地球气候建模、量化气候变化以及对全球变暖的可靠预测”方面的贡献;乔治·帕里西(Giorgio Parisi)因“在从原子到行星尺度的物理系统中发现了无序和涨落的相互作用”同获当年奖项。




上一篇 下一篇 TAG: 诺贝尔奖 物理学